Lý thuyết số phức

Lý thuyết số phức bao gồm: số phức Z, phần thực a, phần ảo b , biểu diễn số thực trên mặt phẳng tọa độ, dạng đại số của số thực.

– Số phức z = a + bi có phần thực là a, phần ảo là b (a, b ε R và \displaystyle i_{{}}^{2} = -1)

– Số phức bằng nhau a + bi = c + di ⇔ a = c và b = d

– Số phức z = a + bi được biểu diễn bới điểm M(a;b) trên mặt phẳng toạ độ.

– Độ dài của \displaystyle \overrightarrow{OM} là môđun của số phức z, kí hiệu là \displaystyle \left| z \right|=\left| \overrightarrow{OM} \right|=\sqrt{a_{{}}^{2}+b_{{}}^{2}}

– Số phức liên hợp của z = a + bi và \displaystyle \overline{z} = a – bi.

Chú ý:

– Mỗi số thực là số phức có phần ảo bằng 0. Ta có R ⊂ C.

– Số phức bi (b ε R) là số thuần ảo (phần thực bằng o)

– Số i được gọi là đơn vị ảo.

– Số phức viết dưới dạng z = a + bi (a, b ε R), gọi là dạng đại số của số phức.

– Ta có: \displaystyle \left| \overline{z} \right|=z;\left| \overline{z} \right|=\left| z \right| \displaystyle z=\overline{z}\Leftrightarrow z là số thực

\displaystyle z=-\overline{z}\Leftrightarrow z là số ảo.

Toán cấp 3 © 2007 Toán cấp 3