Lý thuyết và bài tập về mệnh đề môn Toán lớp 10
Lý thuyết và bài tập về mệnh đề như mệnh đề phủ định, mệnh đề kéo theo, mệnh đề đảo, mệnh đề tương đương, cách sử dụng ký hiệu với mọi và tồn tại khi phát biểu 1 mệnh đề.
Lý thuyết về mệnh đề môn Toán lớp 10
Trong bộ môn Toán lớp 10, lý thuyết mệnh đề rất quan trọng, vì thế những kiến thức về mệnh đề được tóm tắt lại sẽ thâu tóm được toàn bộ chương này.
Tóm tắt kiến thức:
Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
Mệnh đề chứa biến là câu khẳng định mà sự đúng đắn, hay sai của nó còn tùy thuộc vào một hay nhiều yếu tố biến đổi.
Ví dụ: Câu “Số nguyên n chia hết cho 3” không phải là mệnh đề, vì không thể xác định được nó đúng hay sai.
- Nếu ta gán cho n giá trị n= 4 thì ta có thể có một mệnh đề sai.
- Nếu gán cho n giá trị n=9 thì ta có một mệnh đề đúng.
Phủ định của một mệnh đề A, là một mệnh đề, kí hiệu là A. Hai mệnh đề A và A¯ có những khẳng định trái ngược nhau.
- Nếu A đúng thì A¯
- Nếu A sai thì A¯đúng.
Mệnh đề kéo theo Mệnh đề kéo theo có dạng: “Nếu A thì B”, trong đó A và B là hai mệnh đề. Mệnh đề “Nếu A thì B” kí hiệu là A =>B. Tính đúng, sai của mệnh đề kéo theo như sau:
Mệnh đề A => B chỉ sai khi A đúng và B sai.
Mệnh đề đảo
Mệnh đề “B=>A” là mệnh đề đảo của mệnh đề A => B.
Mệnh đề tương đương
Nếu A => B là một mệnh đề đúng và mệnh đề B => A cũng là một mệnh đề đúng thì ta nói A tương đương với B, kí hiệu: A ⇔ B.
Khi A ⇔ B, ta cũng nói A là điều kiện cần và đủ để có B hoặc A khi và chỉ khi B hay A nếu và chỉ nếu B.
Kí hiệu ∀, kí hiệu ∃
Cho mệnh đề chứa biến: P(x), trong đó x là biến nhận giá trị từ tập hợp X.
– Câu khẳng định: Với x bất kì thuộc X thì P(x) là mệnh đề đúng được kí hiệu là: ∀ x ∈ X : P(x).
– Câu khẳng định: Có ít nhất một x ∈ X (hay tồn tại x ∈ X) để P(x) là mệnh đề đúng kí hiệu là ∃ x ∈ X : P(x).
Bài tập về mệnh đề Toán lớp 10
Bài tập về mệnh đề Toán lớp 10
Trong một số các đề thi về mệnh đề thì kiến thức của chúng đều nằm gọn trong sách giáo khoa nên chúng tôi sẽ đưa ra một số bài tập và cách giải để các thí sinh vận dụng và đối chiếu kết quả của mình.
Bài 1 trang 9 sgk đại số 10
Bài 1. Trong các câu sau, câu nào là mệnh đề, câu nào là mệnh đề chứa biến?
- a) 3 + 2 = 7
- b) 4 + x = 3
- c) x + y > 1
- d) 2 – √5 < 0
Hướng dẫn giải:
- a) Mệnh đề sai
- b) Mệnh đề chứa biến
- c) Mệnh đề chứa biến
- d) Mệnh đề đúng
Bài 3 trang 9 sgk đại số 10
Bài 3. Cho các mệnh đề kéo theo
Nếu a và b cùng chia hết cho c thì a+b chia hết cho c (a, b, c là những số nguyên).
Các số nguyên có tận cùng bằng 0 đều chia hết cho 5.
Tam giác cân có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau có diện tích bằng nhau.
- a) Hãy phát biểu mệnh đề đảo của mỗi mệnh đề trên.
- b) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm “điều kiện đủ”.
- c) Phát biểu mỗi mệnh đề trên, bằng cách sử dụng khái niệm “điều kiện cần”.
Hướng dẫn giải:
- a) Nếu a+b chia hết cho c thì a và b chia hết cho c. Mệnh đề sai.
Số chia hết cho 5 thì tận cùng bằng 0. Mệnh đề sai.
Tam giác có hai trung tuyến bằng nhau thì tam giác là cân. Mệnh đề đúng.
Hai tam giác có diện tích bằng nhau thì bằng nhau. Mệnh đề sai.
- b) a và b chia hết cho c là điều kiện đủ để a+b chia hết cho c.
Một số tận cùng bằng 0 là điều kiện đủ để số đó chia hết cho 5.
Điều kiện đủ để một tam giác là cân là có hai đường trung tuyến bằng nhau.
Hai tam giác bằng nhau là điều kiện đủ để chúng có diện tích bằng nhau.
- c) a+b chia hết cho c là điều kiện cần để a và b chia hết cho c.
Chia hết cho 5 là điều kiện cần để một số có tận cùng bằng 0.
Điều kiện cần để tam giác là tam giác cân là nó có hai trung tuyến bằng nhau.
Có diện tích bằng nhau là điều kiện cần để hai tam giác bằng nhau.
Bài 4 trang 9 sgk đại số 10
Bài 4. Phát biểu mỗi mệnh đề sau, bằng cách sử dụng khái niệm “điều kiện cần và đủ”
a) Một số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và ngược lại.
b) Một hình bình hành có các đường chéo vuông góc là một hình thoi và ngược lại
c) Phương trình bậc hai có hai nghiệm phân biệt khi và chỉ khi biệt thức của nó dương.
Hướng dẫn giải:
a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.
b) Điều kiện cần và đủ để tứ giác là hình thoi là tứ giác là hình bình hành có hai đường chéo vuông góc với nhau
c) Điều kiện cần và đủ để phương trình bậc hai có hai nghiệm phân biệt là biệt thức của nó dương
Trên đây là một số lý thuyết và bài tập về mệnh đề cơ bản được sử dụng hầu hết trong các chuyên đề ôn luyện môn Toán, các thí sinh có thể tham khảo, vận dụng, ghi nhớ để đạt điểm cao cho môn học này.