Lý thuyết bất phương trình mũ và logarit 1. Khái quát về bất phương trình mũ và logarit Các bất phương trình mũ và bất phương trình logarit rất phong phú về dạng và phương pháp giải. Một cách tổng quát, bất phương trình mũ và logarit là các bất phương trình có chứa biểu
Ôn tập lý thuyết phương trình mũ và phương trình logarit 1. Các khái niệm về phương trình mũ và phương trình logarit – Phương trình mũ cơ bản là phương trình có dạng [latex]\displaystyle a_{{}}^{x}=b[/latex], trong đó a,b là hai số đã cho, a dương và khác 1; – Phương trình logarit cơ bản
Toàn bộ công thức Toán 12 ôn thi tuyển sinh đại học (nay là thi THPT Quốc gia) mà Toán cấp 3 giới thiệu với các em chia làm các phần sau: Đại số, Lượng giác, Đạo hàm, tích phân, hình học, nhị thức Newton Nhằm giúp các em học sinh học tốt môn Toán lớp 12,
Năm 2017 sẽ thi trắc nghiệm môn Toán vì thế Toán cấp 3 đã sưu tầm tổng hợp 79 câu hỏi trắc nghiệm Toán lớp 12 phần đạo hàm nhằm phục vụ cho việc ôn luyện thi THPT năm 2017.
Lý thuyết logarit 1. Định nghĩa logarit Cho hai số dương a, b với a#1. Nghiệm duy nhất của phương trình [latex]\displaystyle a_{{}}^{x}=b[/latex] được gọi là [latex]\displaystyle {{\log }_{a}}b[/latex] ( tức là số α có tính chất là [latex]\displaystyle a_{{}}^{\alpha }=b[/latex]). 2. Logarit thập phân và logarit tự nhiên Có 2 loại logarit đó là:
Khái niệm hàm số lũy thừa, Đạo hàm của hàm số lũy thừa với số mũ tổng quát, Đạo hàm của hàm số lũy thừa với số mũ nguyên dương, nguyên âm, Đạo hàm của căn thức 1. Khái niệm hàm số lũy thừa Hàm số lũy thừa là các hàm số dạng y = [latex]\displaystyle x_{{}}^{\alpha }[/latex],
Lý thuyết lũy thừa, cách tính lũy thừa của một số 1. Khái niệm lũy thừa Lũy thừa là các biểu thức dạng [latex]\displaystyle x_{{}}^{\alpha }[/latex], trong đó x, α là những số thực, x được gọi là cơ số và α được gọi là số mũ. Lũy thừa có các tính chất sau: 2. Các định
Tính đơn điệu của hàm số y = f(x) 1. Định nghĩa hàm số tăng, hàm số giảm Hàm số f xác định trên K. Với mọi [latex]\displaystyle {{x}_{1}},{{x}_{2}}[/latex] thuộc K và [latex]\displaystyle {{x}_{1}}>{{x}_{2}}[/latex] – Nếu [latex]\displaystyle f({{x}_{1}})>f({{x}_{2}})[/latex] thì hàm số y = f(x) tăng trên K – Nếu [latex]\displaystyle f({{x}_{1}})<f({{x}_{2}})[/latex] thì hàm số y
Tóm tắt lý thuyết sự đồng biến, sự nghịch biến của hàm số Ta kí hiệu K là một khoảng, một đoạn hoặc một nửa cho trước. 1. Khái niệm đồng biến, nghịch biến của hàm số y = f(x) Hàm số y = f(x) đồng biến (tăng) trên K ⇔ ∀ [latex]\displaystyle {{x}_{1}},{{x}_{2}}[/latex] ∈
Lý thuyết cực trị của hàm số 1. Định nghĩa cực trị của hàm số Cho hàm số y = f(x) liên tục trên khoảng (a ; b) và điểm [latex]\displaystyle {{x}_{0}}[/latex] ∈ (a ; b) – Nếu tồn tại số h > 0 sao cho f(x) < f([latex]\displaystyle {{x}_{0}}[/latex]), ∀x ∈ ([latex]\displaystyle {{x}_{0}}[/latex] –