Lý thuyết nhị thức Newton và tam giác Pascal

Tóm tắt kiến thức về nhị thức Newton

I. Nhị thức Newton

1. Công thức nhị thức Newton

Với a, b là những số thực tùy ý và với mọi số tự nhiên n ≥ 1, ta có:

\((a + b)^n\) = \(C_{n}^{0}a^n+C_{n}^{1}a^{n-1}b+C_{n}^{2}a^{n-2}b{^2}+…+C_{n}^{n-1}ab^{n-1}+C_{n}^{n}b{^n} \)   (1)

2. Quy ước

Với a là số thực khác 0 và n là số tự nhiên khác 0, ta quy ước:

\(a^0\) = 1; \(\displaystyle {{a}^{-n}}=\frac{1}{{{a}^{n}}}\)

3. Chú ý

Với các điều kiện và quy ước ở trên, đồng thời thêm điều kiện a và b đều khác 0, có thể viết công thức (1) ở dạng sau đây:

\({(a + b)}^n\) = \(\displaystyle\sum\limits_{k=0}^{n}C_{n}^{k}a^{n-k}b^{k}\) = \(\displaystyle\sum\limits_{k=0}^{n}C_{n}^{k}a^{k}b^{n-k}\)

II. Tam giác Pascal

1. Mô hình của tam giác Pascal

Lý thuyết nhị thức Newton và tam giác Pascal

Ứng dụng tam giác pascal khai triển \({(x-y)}^n\)

Lý thuyết nhị thức Newton và tam giác Pascal-1

2. Cấu tạo của tam giác Pascal

– Số đầu tiên và cuối cùng đều bằng 1

– Xét hai số ở cột k và cột k + 1, đồng thời cùng thuộc dòng n, (k ≥ 0; n ≥1), ta có: tổng của hai số này bằng số đứng ở giao của cột k + 1 và dòng n + 1.

3. Tính chất của tam giác Pascal

Từ cấu tạo của tam giác Pascal, có thể chứng minh được rằng:

a) Giao của dòng n và cột k là \(C_{n}^{k}\)

b) Các số của tam giác Pascal thỏa mãn công thức Pascal:

\(C_{n}^{k}\) + \(C_{n}^{k+1}\) = \(C_{n+1}^{k+1}\)

c) Các số ở dòng n là các hệ số trong khai triển của nhị thức \((a + b)^{n}\) (theo công thức nhị thức Newton), với a, b là hai số thực tùy ý. Chẳng hạn, các số ở dòng 4 là các hệ số trong khai triển của \((a + b)^{4}\) (theo công thức nhị thức Niu – Tơn) dưới đây:

\((a + b)^{4}\) = \(a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}\)