Lý thuyết về bất phương trình bậc nhất hai ẩn. 1. Khái niệm bất phương trình bậc nhất hai ẩn Bất phương trình bậc nhất hai ẩn x, y là mệnh đề chứa hai biến số có một trong các dạng sau đây: ax + by > c, ax + by ≥ c, ax + by
Lý thuyết dấu của nhị thức bậc nhất 1. Định nghĩa nhị thức bậc nhất Nhị thức bậc nhất một ẩn x là biểu thức có dạng f(x) = ax +b trong đó a, b là hai số đã cho, a ≠ 0. 2. Định lí về dấu của nhị thức bậc nhất Nhị thức f(x)
Lý thuyết giải phương trình quy về phương trình bậc nhất, phương trình bậc hai Tóm tắt lý thuyết giải các phương trình: 1. Giải và biện luận phương trình có dạng ax + b = 0 (1) – Nếu a≠ 0 : (1) có nghiệm duy nhất [latex]\displaystyle x=\frac{{-b}}{a}[/latex] – Nếu a = 0;
Tóm tắt lý thuyết phương trình và hệ phương trình bậc nhất nhiều ẩn 1. Phương trình bậc nhất hai ẩn Phương trình bậc nhất 2 ẩn x và y có dạng: ax + by =c (1) trong đó: a, b và c là các số đã cho, với ab ≠ 0 Nếu có cặp
Lý thuyết cơ bản về hàm số bậc nhất y=ax+b 1. Khái niệm về hàm số bậc nhất Hàm số bậc nhất là hàm số được cho bởi công thức: y = ax + b trong đó: a, b là các số cho trước và a ≠ 0. 2. Tính đồng biến và nghịch biến của hàm số