Cuốn sách Học và ôn tập Toán – Đại số và Giải tích 11 là cuốn thứ 5 trong bộ tài liệu gồm 8 cuốn của nhóm Cự Môn biên soạn dành cho các em học sinh lớp 11. Cuốn sách được chia làm 4 chương: Chương I: Tổ hợp và xác suất Chương II:
Bài viết này Toancap3.com giới thiệu với các em 2 dạng toán cơ bản nhất về nhị thức Newton mà các em thường gặp trong các đề thi đại học. Trước tiên sẽ nêu lại lý thuyết về nhị thức Newton, sau đó nêu lên 2 dạng toán với các ví dụ kèm lời giải là
Định nghĩa vi phân Cho hàm số y = f(x) xác định trên (a;b) và có đạo hàm tại x ∈ (a;b). Giả sử ∆x là số gia của x sao cho x + ∆x ∈ (a;b). Tích f'(x)∆x (hay y’.∆x) được gọi là vi phân của hàm số y = f(x) tại x ứng
Lý thuyết đạo hàm cấp 2 1. Định nghĩa đạo hàm cấp 2 Giả sử hàm số f(x) có đạo hàm f'(x). Nếu f'(x) cũng có đạo hàm thì ta gọi đạo hàm của nó là đạo hàm cấp hai của f(x) và kí hiệu f”(x): (f'(x))’ = f”(x) . 2. Ý nghĩa cơ học
Định nghĩa và ý nghĩa của đạo hàm, quy tắc tính đạo hàm bằng định nghĩa, quan hệ giữa tính liên tục và đạo hàm, ý nghĩa hình học, ý nghĩa vật lý của đạo hàm. Bài viết liên quan: Ứng dụng của đạo hàm
Lý thuyết về giới hạn của hàm số 1. Giới hạn hữu hạn +) Cho khoảng K chứa điểm [latex]\displaystyle {{x}_{0}}[/latex] và hàm số y = f(x) xác định trên K hoặc trên K\{[latex]\displaystyle {{x}_{0}}[/latex]}. [latex]\displaystyle \underset{x\to {{x}_{0}}}{\mathop{\lim }}\,f(x)=L[/latex] khi và chỉ khi với dãy số ([latex]\displaystyle {{x}_{n}}[/latex]) bất kì, [latex]\displaystyle {{x}_{n}}[/latex] ∈ K \{[latex]\displaystyle
Phương pháp quy nạp toán học dùng để chứng minh một mệnh đề P(n) là đúng với mọi n ε N*, được tiến hành theo hai bước dưới đây: – Bước 1 (bước cơ sở): Kiểm tra mệnh đề P(n) đúng với n = 1. – Bước 2 ( bước quy nạp): Giả thiết mệnh