Các định nghĩa về vectơ

Định nghĩa vectơ, vectơ cùng phương, vectơ cùng hướng, vectơ ngược hướng hai vectơ bằng nhau, vectơ không.

Ở bài này các em sẽ được học những lý thuyết về vectơ.

1. Định nghĩa vectơ

– Vectơ là một đoạn thẳng định hướng.

– Vectơ có điểm đầu là A, điểm cuối B là vectơ AB, kí hiệu là \(\displaystyle \overrightarrow{AB}\) .

Khi không cần chỉ rõ điểm đầu, điểm cuối vectơ còn được kí hiệu là \(\displaystyle \overrightarrow{a}\), \(\displaystyle \overrightarrow{b}\) …

– Đường thẳng đi qua điểm đầu và điểm cuối của vectơ gọi là giá của vectơ.

2. Vectơ cùng phương, vectơ cùng hướng

– Hai vec tơ cùng phương nếu giá của chúng song song hoặc trùng nhau.

– Hai vectơ cùng phương thì có thể cùng hướng hoặc ngược hướng nếu chúng cùng phương.

3. Hai vectơ bằng nhau

– Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của nó hay nói gọn hơn, độ dài của vectơ \(\displaystyle \overrightarrow{AB}\) là độ dài đoạn thẳng AB, kí hiệu là \(\displaystyle \left| \overrightarrow{AB} \right|\) .

\(\displaystyle \left| \overrightarrow{AB} \right|=AB\)

Độ dài vectơ là một số không âm.

Vec tơ có độ dài bằng 1 gọi là vectơ đơn vị.

– Hai vectơ bằng nhau nếu chúng cùng hướng và có cùng độ dài.

\(\displaystyle \overrightarrow{AB}=\overrightarrow{CD}\Leftrightarrow \overrightarrow{AB}\) cùng hướng với \(\displaystyle \overrightarrow{CD}\) và \(\displaystyle \left| \overrightarrow{AB} \right|=\left| \overrightarrow{CD} \right|\)

– Khi cho trước một vectơ \(\displaystyle \overrightarrow{a}\)

và một vectơ 0 trong mặt phẳng, ta luôn tìm được một điểm A để có \(\displaystyle \overrightarrow{OA}=\overrightarrow{a}\)

Điểm A như vậy là duy nhất.

4. Vectơ – không

Vectơ – không kí hiệu là \(\displaystyle \overrightarrow{0}\)

là vectơ có điểm đầu và điểm cuối trùng nhau: \(\displaystyle \overrightarrow{AA}=\overrightarrow{BB}=\overrightarrow{0}\)

Vectơ – không có độ dài bằng 0 và hướng tùy ý.