Lý thuyết đại cương về phương trình

Tổng quát lý thuyết đại cương về phương trình

1. Định nghĩa phương trình một ẩn

- Phương trình một ẩn số với biến x là một mệnh đề chứa biến có dạng: f(x) = g(x) (1)

trong đó f(x), g(x) là các biểu thức với biến số x. Ta gọi f(x) là vế trái và g(x) là vế phải của phương trình.

- Điều kiện xác định của phương trình là điều kiện của biến x để các biểu thức ở hai vế có nghĩa.

- Nếu có số \displaystyle {{x}_{0}} thỏa mãn điều kiện xác định và \displaystyle f({{x}_{0}})=g({{x}_{0}}) là mệnh đề đúng thì ta nói \displaystyle {{x}_{0}} là nghiệm của phương trình (1).

Một phương trình có thể có nghiệm và cũng có thể vô nghiệm.

Ví dụ: Phương trình: 2 = 3x - 4 có một nghiệm là 2
Phương trình \displaystyle x_{{}}^{2}+3=1 vô nghiệm

2. Khái niệm phương trình trương đương

Hai phương trình:

\displaystyle {{f}_{1}}(x)={{g}_{1}}(x) (1)

\displaystyle {{f}_{2}}(x)={{g}_{2}}(x) (2)

đươc gọi là tương đương và được kí hiệu là: \displaystyle {{f}_{1}}(x)={{g}_{1}}(x)\displaystyle {{f}_{2}}(x)={{g}_{2}}(x) nếu các tập nghiệm của 2 phương trình này bằng nhau.

Định lí:

a) Nếu h(x) là biểu thức thỏa mãn điều kiện xác định của phương trình f(x) = g(x) thì ta có:

f(x) + h(x) = g(x) + h(x) ⇔ f(x) = g(x)

b) Nếu h(x) thỏa mãn điều kiện xác định và # 0 với mọi x thỏa mãn điều kiện xác định thì ta có:

f(x).h(x) = g(x).h(x) ⇔ f(x) = g(x)

⇔ f(x) = g(x)

3. Khái niệm phương trình hệ quả

Phương trình \displaystyle {{f}_{2}}(x)={{g}_{2}}(x) là phương trình hệ quả của phương trình \displaystyle {{f}_{1}}(x)={{g}_{1}}(x), kí hiệu \displaystyle {{f}_{1}}(x)={{g}_{1}}(x) => \displaystyle {{f}_{2}}(x)={{g}_{2}}(x)

nếu tập nghiệm của phương trình thứ nhất là tập con của tập nghiệm của phương trình thứ hai.

Ví dụ: 2x =6 - x => (x-2)(x+1)=0