Thẻ: bất đẳng thức

Ứng dụng của đạo hàm trong chứng minh bất đẳng thức và bài toán tìm cực trị

Trong việc chứng minh bất đẳng thức hay tìm cực trị của một biểu thức, vận dụng phương pháp dồn biến để khảo sát hàm số là một chủ đề rất được nhiều bạn học sinh tham gia các kỳ thi chọn HSG và kỳ thi TSĐH, THPT – Quốc Gia quan tâm. Để có

Ứng dụng nguyên lý DIRICHLET trong chứng minh bất đẳng thức

Nhà toán học Đức P.G.Lejeune Dirichlet (1805-1859) đã nêu ra một định lí mà về sau người ta gọi là Nguyên lí Dirichlet, nguyên lý được phát biểu như sau:             “Nếu nhốt vào n chiếc lồng một số chú thỏ mà số lượng lớn hơn n thì ta sẽ tìm được một chiếc lồng

Chứng minh các bất đẳng thức về tổng, tích của dãy số – Phương pháp quy nạp

1. Một số kiến thức cần nhớ a) Ph­­ương pháp làm trội, làm giảm Giả sử cần chứng minh \(\displaystyle A\le B\), khi đó ta cần làm trội biểu thức A thành \(\displaystyle A\le M\) rồi chứng minh \(\displaystyle M\le B\). Cũng có thể làm giảm B thành \(\displaystyle M\le B\) rồi chứng minh \(\displaystyle A\le M\).

Sử dụng các tính chất của tỉ số, tính chất giá trị tuyệt đối và tính chất của tam thức bậc hai trong chứng minh bất đẳng thức

Người ta có thể sử dụng các tính chất của tỉ số, tính chất giá trị tuyệt đối và tính chất của tam thức bậc hai để làm các bài toán chứng minh bất đẳng thức. Các em hãy đọc lý thuyết và xem các ví dụ để hiểu rõ về phương pháp này. A.