Lý thuyết phương sai và độ lệch chuẩn 1. Phương sai là gì? Phương sai của một bảng số liệu là số đặc trưng cho độ phân tán của các số liệu so với số trung bình của nó. Phương sai của bảng thống kê dấu hiệu x, kí hiệu là [latex]\displaystyle S_{x}^{2}[/latex]. Công thức
Lý thuyết cơ bản về hàm số bậc nhất y=ax+b 1. Khái niệm về hàm số bậc nhất Hàm số bậc nhất là hàm số được cho bởi công thức: y = ax + b trong đó: a, b là các số cho trước và a ≠ 0. 2. Tính đồng biến và nghịch biến của hàm số
Lý thuyết về hàm số, định nghĩa, đồ thị và sự biến thiên. 1. Định nghĩa hàm số Cho D ∈ R, với D ≠ Φ. Một hàm số xác định trên D là một quy tắc f cho tương ứng mỗi số x ∈ D với một và duy nhất chỉ một số y
Lý thuyết hàm số bậc 2 1. Định nghĩa hàm số bậc 2 Hàm số bậc hai là hàm số có công thức: [latex]\displaystyle y=ax_{{}}^{2}+bx+c[/latex] ( với a ≠ 0) Tập xác định (TXĐ): D = R. 2. Tính biến thiên của hàm số bậc 2 Bảng biến thiên của hàm số: a > 0 hàm
Tóm tắt lý thuyết về đường tiệm cận của đồ thị hàm số bất kì 1. Đường tiệm cận đứng Đường thẳng (d): [latex]x={{x}_{0}}[/latex] được gọi là đường tiệm cận đứng của đồ thị (C) của hàm số y=f(x) nếu [latex]\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=+\infty[/latex] hoặc [latex]\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=+\infty[/latex] hoặc [latex]\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=-\infty[/latex] hoặc [latex]\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=-\infty[/latex]
Lý thuyết, khái niệm cơ bản về tập hợp, biểu đồ Ven, tập hợp con Tóm tắt kiến thức cơ bản 1. Khái niệm cơ bản về tập hợp Tập hợp là một khái niệm cơ bản (không định nghĩa) của toán học. Các tập hợp thường được kí hiệu bằng những chữ cái in hoa:
Tổng hợp bài giảng lý thuyết và bài tập về các phép toán tập hợp. Các phép giao, phép hợp, phép hiệu, phép bù tập hợp thuộc chương trình đại số 10. Tóm tắt kiến thức các phép toán tập hợp: 1. Định nghĩa phép giao Giao của hai tập hợp A và B, kí hiệu
Tóm tắt kiến thức về nhị thức Newton I. Nhị thức Newton 1. Công thức nhị thức Newton Với a, b là những số thực tùy ý và với mọi số tự nhiên n ≥ 1, ta có: [latex](a + b)^n[/latex] = [latex]C_{n}^{0}a^n+C_{n}^{1}a^{n-1}b+C_{n}^{2}a^{n-2}b{^2}+…+C_{n}^{n-1}ab^{n-1}+C_{n}^{n}b{^n} [/latex] (1) 2. Quy ước Với a là số thực khác 0
Tóm tắt kiến thức: Phép thử và biến cố I. Phép thử ngẫu nhiên và không gian mẫu 1. Phép thử ngẫu nhiên Phép thử ngẫu nhiên là phép thử mà ta không đoán trước được kết quả của nó, tuy nhiên có thể xác định được tập hợp tất cả các kết quả có thể
A. Tóm tắt kiến thức: Xác suất và biến cố 1. Quan niệm chung về xác suất Xác suất của biến cố A là số đo khả năng xảy ra của biến cố A. 2. Định nghĩa cổ điển của xác suất Định nghĩa: Giả sử A là biến cố liên quan đến phép thử