Ở bài viết này, Toán cấp 3 sẽ giới thiệu với các em cách chứng minh một bài toán bất đẳng thức bằng 3 cách giải khác nhau. Bài tập: Cho x, y, z > 0 và xyz + x + z = y . Tìm max : [latex]\displaystyle P=\frac{2}{1+x_{{}}^{2}}-\frac{2}{1+y_{{}}^{2}}+\frac{3}{1+z_{{}}^{2}}[/latex] Lời giải theo 3 cách khác
Phương trình tổng quát của mặt phẳng bao gồm các dạng của mặt phẳng: mặt phẳng đi qua 3 điểm, mặt phẳng trung trực của một đoạn… Tất cả có 6 dạng viết phương trình tổng quát của mặt phẳng, mỗi dạng đều có phương pháp và ví dụ đi kèm có lời giải.
Đường thẳng và mặt phẳng trong không gian có mối liên hệ mật thiết với nhau. Và được biểu thị qua phương trình đường thẳng, phương trình mặt phẳng. Một số dạng toán thường gặp: – Dạng 1: Viết phương trình tham số và chính tắc của đường thẳng – Dạng 2: Vị trí tương
Chứng minh hai đường thẳng vuông góc với nhau trong không gian không khó và chỉ cần sử dụng một trong năm phương pháp dưới đây. Để chứng minh hai đường thẳng a và b vuông góc với nhau trong không gian ta tiến hành theo một trong các cách sau: 1. Cách 1 –
Phương pháp tìm GTLN, GTNN của hàm số bằng đạo hàm giúp chúng ta tìm được giá trị lớn nhất, nhỏ nhất của hàm số trên một miền xác định. Cụ thể: Khi dùng đạo hàm sẽ tìm được: – Giá trị lớn nhất, nhỏ nhất (GTLN, GTNN) của hàm số trên miền xác định hay một
Cách viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) trong từng trường hợp cho trước. Toancap3.com đưa ra các trường hợp dưới đây: – Trường hợp 1. Tại một điểm [latex]\displaystyle {{M}_{0}}({{x}_{o}};{{y}_{o}})[/latex] trên đồ thị. – Trường hợp 2. Tại điểm có hoành độ [latex]\displaystyle {{x}_{o}}[/latex] trên đồ thị. – Trường hợp
Phương pháp đặt ẩn phụ để đưa về tích phân ban đầu là phương pháp hay được dùng để tính toán các dạng tích phân lượng giác với hàm số sin, cos, tan, cot với các cận π, π/2. Công thức cần ghi nhớ: [latex]\displaystyle \sin (\frac{\prod }{2}-x)=\cos x[/latex] , [latex]\displaystyle \cos (\frac{\prod }{2}-x)=\sin x[/latex] , [latex]\displaystyle
Tích phân truy hồi là dạng tích phân đại số nói tới dạng tích phân với ẩn số x và số mũ n nguyên dương. Lý thuyết của phương pháp tích phân truy hồi: Giả sử cần tính tích phân [latex]\displaystyle {{I}_{n}}=\int\limits_{a}^{b}{f(x,n)dx}[/latex] (n ∈ N) phụ thuộc vào số nguyên dương n. Ta thường gặp một
Phương pháp tích phân từng phần cũng là một phương pháp được sử dụng rất nhiều trong các bài toán tích phân khó, có thể nói nó là phương pháp tối ưu. Lý thuyết của phương pháp tích phân từng phần: Nếu [latex]\displaystyle u(x)[/latex] và [latex]\displaystyle v(x)[/latex] có đạo hàm liên tục trên đoạn [a;b]
Trong số những cách tính tích phân thì phương pháp tính tích phân bằng phương pháp đổi biến số được sử dụng rất nhiều. Cách làm này giúp giải được bài khó. Hướng dẫn dùng phương pháp đổi biến số để tính tích phân [latex]\displaystyle I=\int\limits_{a}^{b}{f(x)dx}[/latex] Nếu: – Hàm [latex]\displaystyle x=u(t)[/latex] có đạo hàm liên